Copied to
clipboard

G = C42⋊C3⋊S3order 288 = 25·32

1st semidirect product of C42⋊C3 and S3 acting via S3/C3=C2

metabelian, soluble, monomial

Aliases: (C4×C12)⋊1C6, C42⋊C31S3, C423S3⋊C3, C422(C3×S3), C3⋊(C42⋊C6), C22.2(S3×A4), (C22×S3).2A4, (C3×C42⋊C3)⋊1C2, (C2×C6).2(C2×A4), SmallGroup(288,406)

Series: Derived Chief Lower central Upper central

C1C4×C12 — C42⋊C3⋊S3
C1C22C2×C6C4×C12C3×C42⋊C3 — C42⋊C3⋊S3
C4×C12 — C42⋊C3⋊S3
C1

Generators and relations for C42⋊C3⋊S3
 G = < a,b,c,d,e | a4=b4=c3=d3=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=ab2, cbc-1=a-1b2, bd=db, ebe=a2b-1, cd=dc, ce=ec, ede=d-1 >

3C2
12C2
16C3
32C3
6C4
18C22
18C4
3C6
4S3
48C6
16C32
3C23
3C2×C4
9C2×C4
4A4
6C12
6Dic3
6D6
8A4
16C3×S3
9C22⋊C4
9C4⋊C4
3C2×Dic3
3C2×C12
12C2×A4
4C3×A4
3C422C2
2C42⋊C3
3D6⋊C4
3Dic3⋊C4
4S3×A4
3C42⋊C6

Character table of C42⋊C3⋊S3

 class 12A2B3A3B3C3D3E4A4B4C6A6B6C12A12B12C12D
 size 13122161632326636648486666
ρ1111111111111111111    trivial
ρ211-11111111-11-1-11111    linear of order 2
ρ311-11ζ32ζ3ζ32ζ311-11ζ65ζ61111    linear of order 6
ρ41111ζ3ζ32ζ3ζ321111ζ32ζ31111    linear of order 3
ρ51111ζ32ζ3ζ32ζ31111ζ3ζ321111    linear of order 3
ρ611-11ζ3ζ32ζ3ζ3211-11ζ6ζ651111    linear of order 6
ρ7220-122-1-1220-100-1-1-1-1    orthogonal lifted from S3
ρ8220-1-1--3-1+-3ζ6ζ65220-100-1-1-1-1    complex lifted from C3×S3
ρ9220-1-1+-3-1--3ζ65ζ6220-100-1-1-1-1    complex lifted from C3×S3
ρ1033330000-1-1-1300-1-1-1-1    orthogonal lifted from A4
ρ1133-330000-1-11300-1-1-1-1    orthogonal lifted from C2×A4
ρ12660-30000-2-20-3001111    orthogonal lifted from S3×A4
ρ136-20600002i-2i0-2002i-2i-2i2i    complex lifted from C42⋊C6
ρ146-2060000-2i2i0-200-2i2i2i-2i    complex lifted from C42⋊C6
ρ156-20-300002i-2i01004ζ32-2ζ32-143ζ3-2ζ3-143ζ32-2ζ32-14ζ3-2ζ3-1    complex faithful
ρ166-20-300002i-2i01004ζ3-2ζ3-143ζ32-2ζ32-143ζ3-2ζ3-14ζ32-2ζ32-1    complex faithful
ρ176-20-30000-2i2i010043ζ3-2ζ3-14ζ32-2ζ32-14ζ3-2ζ3-143ζ32-2ζ32-1    complex faithful
ρ186-20-30000-2i2i010043ζ32-2ζ32-14ζ3-2ζ3-14ζ32-2ζ32-143ζ3-2ζ3-1    complex faithful

Smallest permutation representation of C42⋊C3⋊S3
On 48 points
Generators in S48
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 36 6 40)(2 33 7 37)(3 34 8 38)(4 35 5 39)(9 43 25 16)(10 44 26 13)(11 41 27 14)(12 42 28 15)(17 29 21 47)(18 30 22 48)(19 31 23 45)(20 32 24 46)
(2 34 37)(3 6 8)(4 38 35)(5 36 33)(7 40 39)(9 13 14)(10 12 28)(11 44 43)(15 41 27)(16 25 42)(17 21 19)(18 45 46)(20 31 30)(22 29 48)(24 47 32)
(1 23 26)(2 24 27)(3 21 28)(4 22 25)(5 18 9)(6 19 10)(7 20 11)(8 17 12)(13 36 45)(14 33 46)(15 34 47)(16 35 48)(29 42 38)(30 43 39)(31 44 40)(32 41 37)
(2 7)(4 5)(9 22)(10 19)(11 24)(12 17)(13 29)(14 48)(15 31)(16 46)(18 25)(20 27)(21 28)(23 26)(30 41)(32 43)(33 35)(34 40)(36 38)(37 39)(42 45)(44 47)

G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,36,6,40)(2,33,7,37)(3,34,8,38)(4,35,5,39)(9,43,25,16)(10,44,26,13)(11,41,27,14)(12,42,28,15)(17,29,21,47)(18,30,22,48)(19,31,23,45)(20,32,24,46), (2,34,37)(3,6,8)(4,38,35)(5,36,33)(7,40,39)(9,13,14)(10,12,28)(11,44,43)(15,41,27)(16,25,42)(17,21,19)(18,45,46)(20,31,30)(22,29,48)(24,47,32), (1,23,26)(2,24,27)(3,21,28)(4,22,25)(5,18,9)(6,19,10)(7,20,11)(8,17,12)(13,36,45)(14,33,46)(15,34,47)(16,35,48)(29,42,38)(30,43,39)(31,44,40)(32,41,37), (2,7)(4,5)(9,22)(10,19)(11,24)(12,17)(13,29)(14,48)(15,31)(16,46)(18,25)(20,27)(21,28)(23,26)(30,41)(32,43)(33,35)(34,40)(36,38)(37,39)(42,45)(44,47)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,36,6,40)(2,33,7,37)(3,34,8,38)(4,35,5,39)(9,43,25,16)(10,44,26,13)(11,41,27,14)(12,42,28,15)(17,29,21,47)(18,30,22,48)(19,31,23,45)(20,32,24,46), (2,34,37)(3,6,8)(4,38,35)(5,36,33)(7,40,39)(9,13,14)(10,12,28)(11,44,43)(15,41,27)(16,25,42)(17,21,19)(18,45,46)(20,31,30)(22,29,48)(24,47,32), (1,23,26)(2,24,27)(3,21,28)(4,22,25)(5,18,9)(6,19,10)(7,20,11)(8,17,12)(13,36,45)(14,33,46)(15,34,47)(16,35,48)(29,42,38)(30,43,39)(31,44,40)(32,41,37), (2,7)(4,5)(9,22)(10,19)(11,24)(12,17)(13,29)(14,48)(15,31)(16,46)(18,25)(20,27)(21,28)(23,26)(30,41)(32,43)(33,35)(34,40)(36,38)(37,39)(42,45)(44,47) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,36,6,40),(2,33,7,37),(3,34,8,38),(4,35,5,39),(9,43,25,16),(10,44,26,13),(11,41,27,14),(12,42,28,15),(17,29,21,47),(18,30,22,48),(19,31,23,45),(20,32,24,46)], [(2,34,37),(3,6,8),(4,38,35),(5,36,33),(7,40,39),(9,13,14),(10,12,28),(11,44,43),(15,41,27),(16,25,42),(17,21,19),(18,45,46),(20,31,30),(22,29,48),(24,47,32)], [(1,23,26),(2,24,27),(3,21,28),(4,22,25),(5,18,9),(6,19,10),(7,20,11),(8,17,12),(13,36,45),(14,33,46),(15,34,47),(16,35,48),(29,42,38),(30,43,39),(31,44,40),(32,41,37)], [(2,7),(4,5),(9,22),(10,19),(11,24),(12,17),(13,29),(14,48),(15,31),(16,46),(18,25),(20,27),(21,28),(23,26),(30,41),(32,43),(33,35),(34,40),(36,38),(37,39),(42,45),(44,47)]])

Matrix representation of C42⋊C3⋊S3 in GL6(𝔽13)

5784711
1247077
186404
10812115
12701016
546798
,
6911606
5712990
385296
675867
08125112
30111032
,
010000
001000
100000
000100
000001
111121212
,
12001120
01201012
121211211
999100
1099100
9109100
,
100000
010000
001000
4441200
3440120
4340012

G:=sub<GL(6,GF(13))| [5,12,1,1,12,5,7,4,8,0,7,4,8,7,6,8,0,6,4,0,4,12,10,7,7,7,0,11,1,9,11,7,4,5,6,8],[6,5,3,6,0,3,9,7,8,7,8,0,11,12,5,5,12,11,6,9,2,8,5,10,0,9,9,6,1,3,6,0,6,7,12,2],[0,0,1,0,0,1,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,12,0,0,0,0,0,12,0,0,0,0,1,12],[12,0,12,9,10,9,0,12,12,9,9,10,0,0,11,9,9,9,1,1,2,1,1,1,12,0,1,0,0,0,0,12,1,0,0,0],[1,0,0,4,3,4,0,1,0,4,4,3,0,0,1,4,4,4,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12] >;

C42⋊C3⋊S3 in GAP, Magma, Sage, TeX

C_4^2\rtimes C_3\rtimes S_3
% in TeX

G:=Group("C4^2:C3:S3");
// GroupNames label

G:=SmallGroup(288,406);
// by ID

G=gap.SmallGroup(288,406);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-3,-2,2,4664,198,520,4371,1102,192,1684,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^3=d^3=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a*b^2,c*b*c^-1=a^-1*b^2,b*d=d*b,e*b*e=a^2*b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C42⋊C3⋊S3 in TeX
Character table of C42⋊C3⋊S3 in TeX

׿
×
𝔽